

TIPO DE MATRICES

Realice algoritmos para los siguientes tipos de matrices (tenga en cuenta, cuando se deba verificar si una matriz es cuadrada, es decir que tenga el mismo número de filas y columnas):

1. <u>DIAGONAL PRINCIPAL:</u> Realice un subprograma que muestre los elementos de la Diagonal Principal de una Matriz.

1	2	3
4	5	6
7	8	9

```
Procedimiento DiagonalPrincipal (Entero: matriz[][], F, C)

Entero: i
Si (F=C) ent
Para (i←0, F-1, 1)haga
Escriba: matriz[i][i]
Fpara
sino
Escriba: "La matriz no es cuadrada"
Fsi

Fin_Procedimiento
```

2. <u>DIAGONAL SECUNDARIA:</u> Realice un subprograma que muestre los elementos de la Diagonal Secundaria de una Matriz.

1 2 3 4 5 6 7 8 9

```
Procedimiento DiagonalSecundaria (Entero: matriz[][], F, C)

Entero: i, j

Si (F=C) ent

j←C

Para (i←0, F-1, 1) haga

j←j-1

Escriba: matriz[i][j]

Fpara

Sino

Escriba: "La matriz no es cuadrada"

Fsi

Fin Procedimiento
```


3. MATRIZ IDENTIDAD: Realice un subprograma que compruebe si una matriz es Identidad.

1	0	0
0	1	0
0	0	1

```
Procedimiento EsIdentidad(Entero: matriz[][], F, C)
        Entero: i \leftarrow 0, j, ban \leftarrow 1
        Si (F = C) ent
              -Mq (i < F) \Lambda (ban = 1) haga
                       -Si (matriz[i][i]=1) ent
                               j←i+1
                               -Mq (j<C) \Lambda (ban=1) haga
                                       Si (matriz[j][i]=0) \Lambda (matriz[i][j]=0) ent
                                                ban←1
                                        sino
                                                ban ←0
                                       - Fsi
                               j←j+1
                               -FMq
                        Sino
                                ban ←0
                       Fsi
               i←i+1
               -FMq
               Si (ban=1) ent
                        Escriba: "La matriz es identidad"
               Sino
                        Escriba: "La matriz no es identidad"
               Fsi
        Sino
               Escriba: "La matriz no es cuadrada"
       -Fsi
Fin_Procedimiento
```


4. MATRIZ ESCALAR: Realice un subprograma que compruebe si una matriz es Escalar.

8	0	0
0	8	0
0	0	8

```
Procedimiento EsEscalar(Entero: matriz[][], F, C)
       Entero: i←0,j,ban←1,auxiliar
       Si (F=C) ent
               auxiliar — matriz[i][i]
              -Mq (i<F) ∧ (ban=1) haga
                      -Si (matriz[i][i]=auxiliar) Λ (auxiliar<>0) ent
                              j←i+1
                              \negMq (j<C) \land (ban=1) haga
                                    - Si (matriz[j][i]=0) Λ (matriz[i][j]=0) ent
                                             ban←1
                                     sino
                                             ban ←0
                                     -Fsi
                              j←j+1
                              -FMq
                      Sino
                              ban←0
                      Fsi
              i←i+1
              _FMq
              -Si (ban=1) ent
                      Escriba: "La matriz es escalar"
              Sino
                      Escriba: "La matriz no es escalar"
               Fsi
       Sino
               Escriba: "La matriz no es cuadrada"
       Fsi
Fin_Procedimiento
```


5. <u>MATRIZ TRANSPUESTA:</u> Realice un subprograma que compruebe si una matriz es la Transpuesta de otra.

	2	3	0
A=	1	2	0
	3	5	6

4 T=	

2	1	3
3	2	5
0	0	6

```
Procedimiento Transpuesta (Entero: matriz[][], matrizt[][], F, C, Ft, Ct)
       Entero::i←0,j,ban←1
       Si (F=Ct) \Lambda (C=Ft) ent
               Mq (i<F) ∧ (ban=1) haga
                     j←0
                     -Mq (j<C) Λ (ban=1) haga
                             -Si (matriz[i][j]=matrizt[j][i]) ent
                                     ban←1
                             sino
                                     ban←0
                             -Fsi
                             j←j+1
                      FMq
                      i←i+1
              FMq
       Sino
               ban←0
       FSi
       Si (ban=1) ent
               Escriba: "La matriz si es la Transpuesta de matrizt"
       Sino
               Escriba: "La matriz no es la Transpuesta de matrizt"
       Fsi
```

Fin_Procedimiento

6. MATRIZ SIMÉTRICA: Realice un subprograma que compruebe si una matriz es simétrica.

1	-1	3
-1	2	4
3	4	7

```
Procedimiento Simetrica (Entero: matriz[][], F, C)
       Entero: i←0,j,ban←1
       Si (F=C) ent
              -Mq (i<F) \land (ban=1) haga
                     j←0
                      -Mq (j<C) \Lambda (ban=1) haga
                             -Si (matriz[i][j]=matriz[j][i]) ent
                                     ban←1
                             sino
                                     ban←0
                             Fsi
                             j←j+1
                      -FMq
                      i←i+1
               FMq
              -Si (ban=1) ent
                      Escriba: "La matriz es simetrica"
              Sino
                      Escriba: "La matriz no es simetrica"
              -Fsi
       Sino
               Escriba: "La matriz no es cuadrada"
       Fsi
Fin_Procedimiento
```


TRIANGULAR SUPERIOR DE UNA MATRIZ: Realice un subprograma que compruebe si una matriz tiene una triangular superior.

1	3	-2
0	4	8
0	0	5

```
Procedimiento TriangularSup (Entero: matriz[][], F, C)
       Entero: i←0,j,ban←1
       Si (F=C) ent
              -Mq (i<F) \Lambda (ban=1) haga
                      Si(matriz[i][i]<>0)ent
                             j←i+1
                             -Mq (j<C) ∧ (ban=1) haga
                                    -Si (matriz[i][j]<>0) Λ (matriz[j][i]=0) ent
                                            ban←1
                                     sino
                                            ban ←0
                                    Fsi
                             j←j+1
                             -FMq
                      Sino
                             ban←0
                      Fsi
              i←i+1
              FMq
              -Si (ban=1) ent
                      Escriba: "La matriz tiene una triangular superior"
              Sino
                      Escriba: "La matriz no tiene una triangular superior"
              -Fsi
       Sino
              Escriba: "La matriz no es cuadrada"
       Fsi
Fin_Procedimiento
```


8. TRIANGULAR INFERIOR DE UNA MATRIZ: Realice un subprograma que compruebe si una matriz tiene una triangular inferior.

1	0	0
3	5	0
-8	4	9

```
-Procedimiento TriangularInf (Entero: matriz[][], F, C)
       Entero: i←0,j,ban←1
      Si (F=C) ent
             -Mq (i<F) ∧ (ban=1) haga
                    Si (matriz[i][i]<>0) ent
                          j←i+1
                           -Mq (j<C) Λ (ban=1) haga
                                 ban ←1
                                 sino
                                        ban ←0
                                 -Fsi
                          j←j+1
                           -FMq
                    Sino
                           ban←0
                    Fsi
             i←i+1
             FMq
             -Si (ban=1) ent
                    Escriba: "La matriz tiene una triangular inferior"
             Sino
                    Escriba: "La matriz no tiene una triangular inferior"
             -Fsi
      Sino
             Escriba: "La matriz no es cuadrada"
       Fsi
Fin Procedimiento
```